Rail Network Catastrophe Analysis on R@CMon

Monash University, through the Institute of Railway Technology (IRT), has been working on a research project with Vale S.A., a Brazilian multinational metals and mining corporation and one of the largest logistical operators in Brazil, to continuously monitor and assess the health of the Carajás Railroad Passenger Train (EFC) mixed-use rail network in Northern Brazil. This project will identify locations that produce “significant dynamic responses” with the aim for proactive maintenance to prevent catastrophic rail failure. As a part of this project, IRT researchers have been involved in (a) the analysis of the collected data and (b) the establishment of a database with visualisation capabilities that allows for the interrogation of the analysed data.

GPU-powered DataMap analysis and visualisation on R@CMon.

Researchers use the DataMap analysis software for data interrogation and visualisation. DataMap is a Windows-based client-server tool that integrates data from various measurements and recording systems into a geographical map. Traditionally they have the software running on a commodity laptop with a dedicated GPU connecting to their database server. To scale to larger models, conduct more rigorous analysis and visualisation, as well as support remote collaboration, the system of tools needed to go beyond the laptop.
The R@CMon team supported IRT in deploying the software on the NeCTAR Research Cloud. The deployed instance runs on the Monash-licensed Windows flavours with GPU-passthrough to support DataMap’s DirectX requirements.

GPU-powered DataMap analysis and visualisation on R@CMon.

Through the Research Cloud IRT researchers and Vale S.A. counterparts are able to collaborate for modelling, analysis and results using remote access to the GPU-enabled virtual machines.
“The assistance of R@CMon in providing virtual machines that have GPU support, has been instrumental in facilitating global collaboration between staff located at Vale S.A. (Brazil) and Monash University (Australia).”
Dr. Paul Reichl
Senior Research Engineer and Data Scientist
Institute of Railway Technology